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Theoretical and experimental approaches are examined for describing mech - 
anical and, in general, physical phenomena in continuous media in an accom- 
panying reference frame using the local nonholonomic base frames of natural 

inertial reference frames. Such a natural description does not depend upon the 
properties and states of the “outside” observers. In the simulation of the phy- 

sical space and of time by the spaces of Minkowski or Riemann in the general 
cases of accelerated motions of continua, accompanied by deformations for the 
moving system and for the system of observers, calculation algorithms are in- 
dicated for the tensor characteristics of the phenomena, described in the accom- 

panying reference frame and in the systems of arbitrarily assigned observers. 

For the scientific description of mechanical and, in general, physical objects, 
media, fields and phenomena it is necessary to use theoretical models. The mathe - 
matical modeling of a physical space and of time is the foundation of every theoretical 
interpretation of the world surrounding us. Until now the principal peculiarity of the 
usual representations of physical space and time has been the representation of a con - 
tinuous four-dimensional continuum of points which can be given by four real numbers, 
namely, the coordinates, where one of these coordinates has a temporal nature, which 
finds its own reflection in the geometric properties of the four-dimensional continuum. 

Let x1, x2, x3, x4 be the coordinates of the points and, by definition,let x&be 

the timecoordinate.For fixed x1, I’, x3 and variable x4 we obtain a world line which 
in four-dimensional space can be treated as the trajectory of a point of a three-dimen- 

sional space, individualized by the values of coordinates x1, x2, x3. Let us consider 

the functional relations 

ZQ ‘= cp” (SD), z4 = f (a+, X4); a, 6 = 1, 2, 3 (1) 

In the coordinate system zi (i = 1, 2, 3, 4) we retain the definition of the individual 

points of a thee-dimensional space and we retain the world lines; we change only the 
numerical values of the coordinates, namely, the names of the world lines, and we can 
arbitrarily change the origin of the reference frame and the scale of the time coordinate 
along the world lines. The coordinate systems xi and zi can be looked upon as the 

coordinates corresponding to one and the same family of world lines of individualized points 
forming an ideal entity-medium, being a three-dimensional collection of points taking 
different positions in a four-dimensional space as a function of the values of the time - 
coordinate X’ or z4. From now on the Latin indices vary from 1 to 4 and the Greek, 

from 1 to 3 ; a summation, i.e. , a convoluti~ with respect to like covariant and 

contravariant indices, is carried out everywhere in the formulas. It is evident that each 

isolated coordinate system d together with all possible transformations of form (I) de- 
fine individual moving three-dimensional spaces which, depending on the. definitions of 
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the coordinates ZJ and their ranges, are subspaces of the whole four-dimensional space 
or of some part of it. The system of individualized points in the different coordinate 

systems, subject to transformations (1) by definition, is called a reference frame. 
The coordinates Xa or sa are called the Lagrange coordinates of the correspon- 

ding reference frame. The systems of coordinates xi and z’ are called the accom - 
panying coordinate systems for the reference frame with Lagrange coordinates .P or 

Za. Thus, every coordinate system is an accompanying coordinate system for some 
reference frame. It is evident that for a given reference frame the indivual points in an 

accompanying coordinate system with coordinate lines modified as a function of the time 
coordinate are at rest since their three-dimensional coordinates Za and zd are constant. 

In a given four-dimensional space we can examine numerous different reference 
frames. Let there be two different reference frames N and M with accompanying 
coordinate systems 5% and c corresponding to them and mutually related, in general, 
by one-to-one functional relations of the general form 

xi = fi (El, E2, Et%, g4) or ki = cpi (xl, x2, xc3, x4) (2) 

In this case relations (2) define the law of motion of system M relative to N and, 
vice versa. By definition there occurs a motion of the system of Individual points 
in ll4’ with p = const relative to the reference frame N (xi) or, conversely, of the 
system of individual points in reference frame N with za = const relative to the re- 
ference frame M (E’). For the sake of definiteness in what follows we agree to call the 
reference frame N .with coordinates 5% the observer system and the reference frame 

iz/I with accompanying coordinates Ei , the moving system. The systems of world 

lines and coordinate lines both in system N as well as in system &f can be of the most 

general form. 
To describe the geometric properties of the space and the typical properties of 

motion (2) and of the other physical phenomena we introduce the typical concepts of 
scalar, vector and, in general, tensor nature, and, in particular we introduce by well- 

known means the covariant 31 and contravariant &Ji basic vectors i = 1, 2, 3, 4, for 
every coordinate system. To compare typical vector and tensor quantities at different 
points of space-time we introduce, by means of a far reaching specialization of the pro- 
perties of the space, the connection coefficients I’ij.L (x1, z2, x3, x”) occurring in 

the formulas 
83iif9J = lTij.k3, (3) 

The subsequent paths of physico-geometric concretization of the mathematical model 
of space and time can be different. As is well known, as the model of a physical space 
in Newtonian mechanics we introduce a three-dimensional Euclidean space, while time 
is treated as a scalar. In the special theory of relativity (STR) it is postulated that a 
pseudo-Euclidean space serves as the model of the four-dimensional physical space-time, 
while in the general theory of relativity ( GTR ) and in numerous generalizations,it is 
accepted that the four-dimensional space- time is Riemannian and that locally this space 

is pseudo-Euclidean just as in the STR. Many other suggestions for interpreting the 
models of physical space are also known. 

Below we consider only kinematic problems and accept that space-time forms 
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a Riemannian or a pseudo-Euclidean space in which the following relations hold. Th.e 
metric has the form 

CW = gij (9) &&%&I? (4) 

and 

where C&J is the line element of the elementary vector ds = dx13$, and gij are the 
components of the metric tensor. By using a transformation of form (1) with function f 
defined to within an additive constant, at any point of space N (zOr) the expression for 
ds2 can be brought to the form 

&s = (&4)s - (d~r)~ - (dz2)” - (~z~)~ (5) 

Both in the GTR as well as in the STR such a transformation of form (1) is possible 
only locally at a point of N (zoz). By any Lorentz transformation of form (2 ) , being a 
linear transformation from zi to yi and containing ten arbitrary constants in the general 

case, formula (5) is reduced to the form 

ds2 = (dy4)’ - (d,Zf)2 - (dy’)” - (dy3)2, l?ij.k (#i) = 0 (6) 

Using a general malformation of form (2) t the ~a~fo~a~on to form (6) in the STR 
is possible globally at all points of the space at once, As is well known [l], in the GTR, 
in the general case, equality (6) can be realized at once at all points of any curve C 

by means of a coordinate transformation of general form (2). The corresponding co - 
ordinates are determined to within any Lorentz transformation; they are connected with 
the form of curve C and are called the Fermi coordinates. In this case curve c at all 
its points can be an accompanying world line in the coordinate system yi only if this 
curve c is a geodesic. 

If the components of the metric tensor are like in different coordinate systems 
Zi and zli (rk) , i.e. ) 

gii (3”) = gij W”> et 

then from the point of view of the metric properties of Riemannian space there is a sym- 
metry relative to those various coordinate system transformations which can form a fin- 

ite or infinite group of coordinate transformations, In the general case Riemannian 
spaces are asymmetric. For asymmetric Riemannian spaces the values of the metric ten- 
sor component, taken at all points of the space, completely determine a coordinate 
system which, obviously, has an invariant geometric sense[ 21. From what has been 
said it follows that for asymmetric Riemannian spaces transformation(2)or the law of 
motion of the accompanying reference frame M with coordinates E’ relative to the 

observer system N with coordinates CC’ can be found from the equations 

(8) 

if gij (t”) and &-a (E’) are known (for instance, from experiment). It is obvious that 
for the solvability of the problem of integrating system (8 ), which consists of ten par - 
tial differential equations with four unknown functions Z’ (Ek), the functions gij (z?) 
and g,,’ (g’) must satisfy appropriate compatibility conditions. 

The compatibility of Eqs. (8) can in principle serve as a check on the fit- 
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ness of modeling space and time by a metric of form (4). 

On the other hand, the law of motion (2) of the continuous medium and the 
metric tensor components gPq’ (El) and gi j (z”) can be determined theoretically by 

using dynamic equations or by using measurements in system a? of the signals carrying 
Information on events in the moving system E”. The latter way is not always possible 
in principle and is connected with a number of distortions brought in, firstly, by the sin- 
gularities and processes in the intervening medium in which the signals are propagated 
and, secondly, by the difference in the mechanical and, in general, physical state of 
the observer and the moving medium. Examples are, on the one hand, the phenomena 
of scattering, absorption and divergence of electromagnetic or acoustic perturbations in 
the intervening medium and every kind of “noise” , and on the other hand, phenomena 

similar to the Doppler effect and especially to relativistic effects, connected with the 
difference in electromagnetic characteristics and with the difference in the course of 
time both in the change of geometric sizes from the viewpoint of the observer in the ob- 

server system as well as in the moving system. 

Itisobvious that the examples of the effects listed are connected in an essential 
way with the choice of the observer system and reflect not only the properties and states 
of the phenomena in the moving system, but also both the phenomena and the states of 

the observer himself, which are, in general, immaterial from the point of view of the 
physical laws regulating the phenomena taking place in the moving system. In this re - 

gard we can take the general position that it is advisable to investigate and to establish 
the fundamental physical relations by constructing and measuring theoretical models di- 

rectly in the accompanying reference frame by theoretical or experimental means, and 
after this to recompute and reformulate the results obtained in the point of view of the 
interested observer. Essentially, in the simplest special cases, such things enter into the 

physical theories sometimes not entirely in explicit form. Later we show that in their 

essence the results obtained in the accompanying reference frame, independent of the 
state and motion of the random observers, have a simpler form than the results obtained 

after the above-mentioned reformulation which can be carried out by using additional rather 
complex mathematical operations constituting navigational calculations. Roughly spea- 

king, the crux of the matter can be illustrated by examples of comparing the viewpoint 
on Ptolemy in an Earth observer system with the viewpoint of Copernicus in a system 
accompanying the center of gravity of the solar system, or by example of considering 

the motion of Jupiter’s satellites relative to its center, or by considering the physical 
phemomena in the atoms of a moving body when using reference frames attached to the 

atom nuclei. etc. 

Below we dwell on methods for the experimental determination of the compo - 
nents of the metric tensor in the accompanying coordinate system and on mathematical 
navigation problems of the recalculation of given tests in the accompanying reference 
frame on the measurement results of the metric tensor components obtained in the tests 
or in the theory by a specified observer. 

At each point M onsome world line C with an appropriate coordinate system zi, 
at which relations (5) are fulfilled, we determine the coordinate frames 31’ of unit vec- 
tors. If we accept that the spatial frames 3,‘, 3s’, 3a’, perpendicular to the four- 
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dimensional velocity U = S4’, do not rotate in the three-dimensional space with co- 
ordinates P when passing from one point to an adjacent one along C, then such fra- 
mes form a moving vector frame along C, called the Fermi-Walker frame. From a 
consideration of an infinitesimal Lorentz transformation of the Fermi-Walker vector 
frame when passing from point A!f to a point infinitely close, it is easy to deduce that 
along the world line there holds at each point M of it the vector equalities 

d3i’ I ds = (alui - aiul) 3” 
(a = dulls = ax3z’) (9) 

where a is the four-dimensional acceleration of point M. 

Together with frame 33’ we consider a frame Si* for which the equalities 
33” = 3 i’, but d3i* I ds = 0 or 

a, = d3,* I ds = du* I ds = 0 

are true at each point M . Frame Ji* can be treated as the Fermi-Walker frame 
for the geodesic line passing through point M of the given world line and tangent to it 

at this point. The vector basis ai * at point A!f corresponds to a local inertial reference 
frame. In this frame the point M* coinciding with the given point M on the world 
line being examined moves along the geodesic without acceleration, a,* = 0, but its 

four-dimensional velocity at the instant being considered exactly equals the velocity of 
point M (u* = u). ( It is evident that the three-dimensional velocities of points M 
and M* relative to any reference frame are alike as well ). The local basis 3i* can 
be treated at each point of the accompanying reference frame as an attribute of this ref- 
erence frame and as a local inertial basis defining the progressively freely falling vector 
frame 3i* ’ in a gravitational field. The locally defined inertial reference frame Si* 
is called the natural frame for the point 8f ( E3, S) being examined on the world line 
in the accompanying system. 

It is easy to understand that the three-dimensional acceleration vector a* of 
the points of the material medium, measured by a very small three-component accel- 
erometer fixedly attached to basis 3i’, 3s’) 3s’, equals the acceleration of the sen- 
sing element (for example the acceleration of a small bead of mass m) of the accel- 
erometer relative to the inertial basis 3i”. This acceleration equals zero when point 
M moves along a geodesic (a free fall in a gravitational field, corresponding to the 

weightless state ) . Here we accept that 

CPr” 1d’r* 1 -- ds”= $ &‘L = 7 a* 

where dr* is an elementary shift of point M relative to basis St*, c is the “velocity 

of light” , and dr is an increment in proper time, alike in bases 31’ and 33” and 
coinciding with the increment of proper time along the world line being examined, 
passing through the point M being considered (dr* / dT = 0 but, in general, d2r* / 

dT2 is nonzero). The conclusion arrived at above follows immediately from the 

equality (see [3 ] > 
du ia” a= ols=7- (10) 

In the accompanying reference frame, the frame supporting the accelerometers and co- 

rresponding to the bases 3,* = 3,‘(a = 1,2,3), keeping its spatial orientation 

fixed, can be realized by means of three gyroscopes moving freely in a gimbal sus- 
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pension with noncoplanar axes. 
We now describe a possible method for determining the metric tensor components 

gprl (E”) (P, Q = 172, 3, 4) in the accompanying reference frame for a material 
medium. It is obvious that without loss of generality we can introduce new accomp - 
anying coordinates for any reference frame by using transformations of form (1 ), in 

which the following equality is fillfilled: g& = c’, where c is a constant which, ac- 

cording to the fundamental postulate of the STR and the GTR, can be taken as equal to 
the velocity of light; therefore, in the case of an arbitrary accompanying reference 
frame the formula for ds2 can be taken in the form 

ass =: c”dt2 -+ 2g,dE”& + g;bd&Qa (11) 

We see that on each world line with EX = const, since cdr = ds, we can treat the 

coordinate r as an invariantly defined time, measured on small clocks firmly attached 
to the fixed points in the accompanying reference frame. The origin of the proper time 

reference frame on the different world lines can be established independently and, in 
general, arbitrarily. 

It is evident that the system of world lines in the general case does not admit 
of families of orthogonal three-dimensional surfaces. Such surfaces could be introduced 
as the surfaces 

T (El, E2, E”) = const 

Therefore, in the general case it is not possible to make all the g;, (Ep, T) zero at 
once by using a holonomic transformation of form (1) , since otherwise when g;* = 0 
the coordinate surfaces ‘G = const would be orthogonal to the world lines ; as a con - 
sequence of this in the general case when g,^, (tb, T) f- 0 it is not possible, by choo- 
sing the origin of the proper time reference frame on the world lines, to find on all the 

world lines points corresponding to ‘G = const, i. e., points corresponding to one and 
the same instants of proper time ‘6. Hence it follows that for a moving medium it is 
impossible in the general case to find a finite or infinite body forming the whole med- 
ium or a part of it and occupying infinite or finite three-dimensional volume, for which 
we could find a proper time which is one and the same for all points of such a body. 

At each point of the medium we can rewrite the expression for d.3 in (1l)as 

ds2 = c2dq” -I- h;;jd~*d~” (12) 

drL 2= dT -b % dE’,. fI,;, :~= g;b _ !?i$ = (3&) (13) 

where dr is an element of the coordinate line with number i. The vectors 3; form 
a basis in-the accompanying coordinate system corresponding to formula (11). The 

vectors 3, form the accompanying basis for thesmall three-dimensional volume ele- 
ment dv, of the space orthogonal at point .M to the world line being examined. As the 
accompanying coordinates of the individual points in the infinitesimal volume du, we 
can take dEx, where 3, = a,r / VEX (a, r is an element of the corresponding coordinate 
line in volume dus). Along each world line we have e = const and, therefore, 

dT1=da on c’. The quantity ‘rr defined from (13 ) , in contrast to variable ‘G , is 



On a natural theory of continucur media 
997 

defined nonholonomically in a four-~men~onal volume, since the ~ght-hand side in 
the expression for d’~, is not a total differential because in the general case the integra- 
bility conditions 

_..._=[), afiA a& 
az 

@,- -_o 

iJ!$” aE” (14) 

are not satisfied. We can take ds2 globally to form (12) with the aid of holonomic 
~amformation (1) only when the integrability condi~o~ (14) are satisfied, and, thus, 
make all the & , zero, draw the orthogonal~rfac~ to the given family of world 
lines and set ‘Q = ‘C in the finite volumes. The corresponding reference frame de - 
fined by the world line family being examined and the coordinate system are said to be 
synchronous. In a synchronous reference frame the proper time z can be introduced as 
a global characteristic for the corresponding three-dimensional medium. The three- 
dimensional metric 

dP = - h&d~d~~ 

holds in sync~onous systems on the tree-dimensional surfaces z = ‘tl = con& or - 
thogonal to the world lines. It is easy to see immediately from the geodesic equations 
that for a holonomically defined variable ‘rl and, consequently, in the presence of 

equalities (14)) the world lines p = const coincide with the coordinate lines 71 and 
are geodesics. The motion of the medium’s points on the geodesic world lines is inertial 

since the equality a = cs2a* = 0 is true along geodesics. 
In every Riemannian space we can introduce synchronous reference frames, and, 

respectively, coordinate systems accompanying the world line family formed by the geo- 
desics; however, in the general case the reference frame and the coordinate system con- 

nected with the family of geodesics as world lines are not synchronous. In Riemannian 
spaces synchronous systems are analogous to inertial frames in the STR and in Newtonian 

mechanics. In the general case of an asymmetric Riemannian space we can construct 

a synchronous coordinate system in a natural way with the aid of of the following con- 

struction. In the region being considered of the four- dimensional space we can uniquely 
pick out geometrically a certain point P and a certain direction at this point {for ex - 
ample. a point co~~ponding to the singular values of the invariants of the curvature 

tensor ), Through point P we draw a geodesic Lo in the time-like direction picked 
out and through point P we draw all possible geodesics orthogonal to L” at point P . 
The family of geodesics obtained forms a specific three-dimensional space 2 immersed 

in the given four-dimensional Riemannian space. Through each point of 2 we draw a 

geodesics L orthogonal to 2. We treat the family of geodesics L, containing L”as 
well, as world lines corresponding to the reference frame, In this reference frame we 
introduce the accompan~ng coordinates $, zs, 2, 7, where Z is the proper time 

along geodesics L and the xX are coordinates of the points of 2. From the con - 

struction of the world lines it follows that because the lines L are orthogonal to z the 

formula (11) for ds* has the form 

&s z c2dT2 + garjdx”dxp (15) 

at the points of the three-dimensional space C , i. e., g,4 = 0 on z, dnd the ew- 
ation of the three-dimensional surface Z can take the form 

z (x%%s) = ‘Go 



998 L. I. Sedov 

and we have& = cdTalong the geodesics corresponding to x1 == const, a = 1, 2, 3. 
It is easy to perceive that when z = z’ 2 T,, the metric (15 ) retains its form, i. e. , 
when r 2 ‘GO the equalities g;, (xp, %)=O are true as well. As a matter of fact, 
since the coordinate lines ‘t are geodesics when xX = const , it follows from the 
equations of the geodesics 

that 

therefore g,, (xl, x2, x3, .t)=O since g,, (xl, x2, x3, .60) = 0 by construction. 
Using an analogous construction we can in a unique manner reduce the three- 

dimensional form for dZ2 on the asymmetric three-dimensional surface 2 to 

when z=‘6, and we can take xX = 0 at point P ; to the tangents to the orthogonal 
coordinate geodesics X' and x2 on Z at point P we can attach invariantly specified 

directions and, in addition, satisfy the following equalities: 

g;i (0, x2, x:r, -co)-0, g;2 (0, x2, x3, To) =g; (0, 0, 0, 70) = 1 

In the case of symmetric Riemannian spaces the transformation of ds2 to the form in- 
dicated or to a still simpler form also is possible, but the corresponding transformation 

is not unique. 
To determine the components of the three-dimensional metric tensor ha:3 

(p, a) at point M ‘t 1 is sufficient to establish in the three-dimensional infinitesimal 

element dv, of the space, perpendicular to vector u and directed along the tangent 

to the given world line, a linear transformation between the vectors of bases 3~ and 
3,” p, y = 1,2, 3) 

qj = ID. y (2)3,* or 3,* = c,:B (‘G) $3 (Z*..YCy.P = 6P) (16) 

It is necessary to construct a dynamic theory for the theoretical determination 

of matrix Zp:y . For the experimental determination of matrix ZB.‘~ it is sufficient 
to measure, using scaling devices in the proper reference frame, the six independent - 
angles from the ten between the vectors 3, and the three unit vectors 3,” , forming 
in a known way an unchangeably directed frame connected with the gyroscopes, and, in 
addition, it is sufficient to measure the three lengths of the vectors 3,. If the accom- 
panying frame is absolutely rigid, then it is sufficient to measureonly the three angles 
defining the orientation of the unalterable trihedron 3a in relation to the fixedly ori - 
ented trihedron 3,“. After the determination of the matrix Za,. il , from (13) we find 

Without loss of generality we can take it that 

gYY * -1 , gyp* = 0 for Y P P 

in other words, we can reckon that the unit vector basis 3,* is orthogonal. 
Let us now give the formulas for determining gz; in the terms of the corn - 
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ponents a *a of the three-dimensional acceleration measured by an accelerometer and 
equal to the kinematically invariantly determined four-dimensional acceleration multr- 
plied by c2 for the point M on the world line C. In the different bases equality 

(10) can be further rewritten as 

i 
(18) 

In the accompanying system (ll), #e / o?$ = 0 and dt 1 ds = 1 / C; here 3i 
are the basis vectors in system &; 3i are the basis vectors in system 3% which can be 

treated as a global Cartesian coordinate system in the STR or as the holonomic Fermi 
coordinate system in the GTR for the given world line C. Since 

the last of equalities (I.8 ) yields 

$,-is 

and after a scalar mul~p~cation of the right and left hand sides by 31 we obtain 

a@ - = a*J (3=*3j*) az 
Since3,* is perpendicular to 3: and g4i = c2, we have thatdg4; i dz = 0 

and (3,* 3;) = 0 are true when j = 4 . On the basis of formulas (16 ) and equality 

we obtain 

(19) 

if frame 3,* is orthogonal, we arrive at the following equations for the determination 
of g& 

ag,-, 

3 

-= 
az r, 

IiW;"; 
G==l 

Relations (17) and (19) together with the initial data for &% on the world line being 
considered completely determine the metric tensor components $& and gai; 1 in the 
accompanying reference frame. From the preceding results it follows that the metric 
in the accompanying reference frame depends upon the geometric singularities of the 
world lines, since the four-dimensional acceleration vector a and, respectively, the 
three-dimensional acceleration vector a* measured by the accelerometer are deter - 

mined by the four-dimensional curvature of world line c. 
The problem of determining the law of motion of the moving medium from 

the viewpoint of the given observer is a navigation problem which can be solved if we 
accept that the components of the metric tensors and of the matrix l&a are known. 

Using these data we can also calculate all the components, introduced initially in the 
observer system or in the accompanying moving system, of the tensor characteristics of 
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the physical phenomena in each of these reference frames. In 1943 Tkachev E4 I ( *) 
first posed and solved the general navigation problem “without systematic errors w ( ** ) 
in the framework of Newtonian mechanics for the arbitrary motions of a rigid body, 

To solve the general navigation problem within the frameworks of the STR and 
the GTR we rely on Eq, (18) (see [3 ] ). Hoag and Wrigley [5] examined the navigation 
problem in the special easeof the rectilinear motionof a material point,At each point of 
the world line being examined the unit ortbog~al bases 3i in the Fermi coordinate 
system and the local inertial orthogonal unit vectors of bases 3i* are interrelated by 
the Lorentz transformation. Since the spatial vectors of bases 3, and 3,* preserve 
their orientation in three-dimensional space when passing from one point of the world 
line to another, we can take it that for both the t~eeudimensional vector frames in the 
three-dimensional space their orientations are the same at all points of the world line. 
( Their o~entations vary in the four-dimensional space 1. 

The bases 31 and 3i* can be different only at the expense of the translation 
motion of the three-dimensional frame 3,” relative to frame 3;. By v = u@-3.a 
we denote the vector of this translation motion. The corresponding transformation of 
the vectors of the basis and of the matrix of this Lorentz tr~sformation for finite U’ 
have the form [6] 

3i* = ~i,3’3~, 11 d;! 11 = (20) 

On the basis of (18) and (20) we obtain the equations for the components Us at differ- 
ent points of world line ’ C 

(21) 

*) Tkachev, I,. I,, Qn the theory of spatial orientation in instrument flight with the 
aid of ~n~lurn-~r~co~ systems, Master’s Thesis, Bauman MVTU I 1944. 

**) * Wi~out systematic errors ” signifies a regular r~al~ulation for the observer of 

the measurement data obtained in tests in the accompanying reference frame by ideal 
~~rnen~~ i. e. , i~~rne~~ acting without i~t~ment errors, Algori~ms for solving 
individual navigation problems, proposed before Tkachev’s work, contained systematic 
errors when applied to the general case. 
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Here & is an increment of proper time at point M on the world line, dt is an in - 
crement of proper time in the reference frame yi with basis 31. It is easy to verify 

that the complementary equation (21), corresponding to i = 4, is satisfied fdenti- 
tally by virtue of EQs. (21) and of the connection d’t= r/l - ys / cs dt. Without 
loss of generality, when integrating the system of Eqs. (21) we can assume that we have 

r&a = 0 for some typical instant ze , This can always be achieved by choosing 
a constant orientation of basis 3* and, respectively, of vector 34 in the Fermi co - 
ordinate system, if we set 3, = u (-co). 

After integrating Eqs. (21) for the given world line $ = eonst we find 

yi = fi (1) (22) 

The law of motion (22 1 gives a solution of the navigation problem within the frame - 
work of the STR if we accept that the coordinate system yi is a global Cartesian ref- 
erence frame. To obtain the solution of the navigation problem in the GTR it is net - 
essary to further tra~form the coordi~t~ a? ( y j) . Since 

from equalities (18 ) follows 

We obtain the e~ati~s for determi~ng 
stancy of vectors 3j along _C. 

b;f from f23 ) with due regard to the con - 

Let ox , w2 &I3 co* , f be the components of some arbitrary constant vector w 
in the constant basis 3i. From (23 ) we can writer W =LT 3i”bj’i “j. Since 

along C, hence we obtain 

Thus, for v‘x (a), 5% (a) and b+*i (a) in the GTR we obtain a system of ordinary 

differential equations (21), (24) and (25) of order 3 f 8 + 16 = 27. The corres- 
ponding initial ~ondi~ons for bj.ai and for a&“, &,’ and u:, are easily found, 

The algorithm proposed above can be replaced by another, depending on the 
different make up of the given measurement obtained by the inertial devices in tests 
or by the theory developed in the accompanying reference frame. From the preceding 

theory it is also clear that with the aid of the components of the metric tensors ggj (a?) 
and g<> ( p, z), of the acceleration vector a* = a - c2 

di.” and b^j..i 
and of the matrices I,. 8, 

introduced above we can compute the components of any tensor 
given in one of the bases 3+ , 32, 31”) 33 and 31” on any other basis. 

In the Fermi coordinates in the ~erna~~an space we can shift the vectors and 
tensors in bases 31 along the fundamental world line, preserving the unchangeability 

of their components, as well as in the ~cl~dean space when using Cartesian systems, 
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To pass from the accompanying reference frame to the local proper reference frame 
(or vice versa) we need to know only a* and the matrix 2,:s. The determin - 
ation of thesedata or of quantities equivalent to them is possible by mechanical means 
with the use of inertial or other devices or is possible theoretically on the basis of solving 
the appropriate problems by means of dynamic equations within the framework of phy - 
sical models in the natural setting of the problems, implying that the unessential parti - 
cipation of the properties and states of the constant observer are excluded in the original 
laws. The accompanying reference frame, their three-dimensional metric and the pro- 
per time are connected with the physical relations and with the direct perceptions of the 
direct pa~icipan~ of the events from the physical essence of tbe processes and phenomena 
in the material bodies. These relations and perceptions must be contrasted with the 
random interpretations depending on the arbitrariness in the choice of the moving ob - 
servers and their experiences, on their tree-~mensional metric and on the flow of their 
proper time. 

The main results of this paper were reported at the Fourteenth International 
Congress on Theoretical and Applied Mechanics at Delft in August) 1976. 

REFERENCES 

I., Fermi, &, Soprs i fenomeni the avvengono in vicinanza di una linea oraria. 
Atti. Accad, Naz.Lincei,~nd.Cl. Sci. Fys. Mat. o Natur., Vol. 31, 1922. 

2. Sedov, L. I,, On.conditions at second-order discontinuities in the theory of 
gravitation. PMM Vol, 36, No. 1, 1972. 

3, Sedov, L. I., Inertial navigation equations based on relativistic effects. 
(English translation f , Acta A&on., Vol. 4 s No. 3/4, 19X’. 

4, Tkachev, L, I., Inertial Orientation Systems t Moscow, Mask . Energ. Inst.. , 
1973 * 

5. Hoag, D. G, and Wrigley, W., Navigation and guidance in interstellar space. 
Acta Astron., Vol. 2, No. 5/6 I 1975. 

6, Tonnela, M, -A., ~undam~tals of ~ectromagnetism and of the Theory of 
Relativity. Moscow, Izd. Inostr. Lit ‘ ) 1962. 

Translated by N. H, C. 


